
© 2012 Carnegie Mellon University

Software Assurance vs.
Security Compliance:

Why is Compliance Not
Enough?

Carol Woody, Ph.D.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

2

Current Challenge for Security Compliance

Software
Supply
Chain

Acquisition Life Cycle

3

How is Security Compliance Addressed?

Reliability, quality, and effective systems engineering
are considered sufficient to address security

Security requirements are
• Established at the system level based on concerns for

confidentiality, integrity, and availability (CIA)
• Assigned to components through system engineering

decomposition
• Not required until Milestone B

4

Security Compliance Limitations

CIA principles were developed in 1974, and much
has changed since then

Effective software engineering is not being addressed
by system engineers

Many acquisition decisions affecting security are
made before Milestone B

5

Origins of CIA - 1

Saltzer and Schroeder, “The Protection of
Information in Computer Systems,” Communications
of the ACM, 1974

Defined security as
“techniques that control who may use or modify the
computer or the information contained in it”

Described the three main categories of concern:
confidentiality, integrity, and availability (CIA)

6

Origins of CIA - 2

Technology environment in 1974
• S360 in use from 1964-1978
• S370 came on the market in 1972
• COBOL & BAL programming languages in use
• MVS operating system released in March 1974

7

Origins of CIA - 3

What’s missing?
• Internet
• Morris worm, which occurred in November 1988
• 49,296 common vulnerabilities and exposures (CVE)
• Java, C++, C#
• Mobile computing
• Bluetooth
• Stuxnet attack on isolated supervisory control and data

acquisition (SCADA) systems
• Cloud computing
• etc.

8

Software Assurance

Picks up where compliance leaves off
Definition: Software assurance
(DHS Software Assurance Curriculum Project)

Application of technologies and processes to achieve a
required level of confidence that software systems and
services function in the intended manner, are free from
accidental or intentional vulnerabilities, provide security
capabilities appropriate to the threat environment, and
recover from intrusions and failures.

7 principles must augment CIA

9

7 Principles for Software Assurance

1. Risk: Perception of risk drives all assurance
decisions.

2. Interactions: Systems are highly inter-connected
and share the risks of all connections.

3. Trusted Dependencies: Your assurance
depends on other people’s assurance decisions
and your level of trust for these dependencies.

10

7 Principles (continued)

4. Attacker: A broad community of attackers with
growing technology capabilities can compromise
any and all of your technology assets - there are
no perfect protections, and the attacker profile
constantly changes.

5. Coordination: Assurance requires effective
coordination among all technology participants
and their governing bodies.

11

7 Principles (concluded)

6. Dynamic: The threat is always changing.
Assurance is based on governance, construction,
and operation and is highly sensitive to changes
in each area.

7. Measurable: A means to measure and audit
overall assurance must be built in. If you can’t
measure it you can’t manage it.

12

Systems Engineering vs. Software Engineering

Systems Engineering Assumptions
• Systems can be decomposed into

discrete, independent, and
hierarchically-related components
(or subsystems)

• Components can be constructed and
integrated with minimal effort based
on the original decomposition

• Quality properties can be allocated
to specific components

Software Engineering Realities
• Software components are often

related sets of layered functionality
(one layer is not inside another)

• Interactions of components (not the
decomposition) must be managed

• Security properties relate to
composite interactions (not to
individual components)

System

Sub-system

HW SW

applications

common software services

generic device access
(e.g., LAN, device
drivers)

Interfaces to
capabilities
provided by
a layer

Within and outside
of the system

13

Role of Software in Systems

From the NRC Critical Code Report *
“Software has become essential to all aspects of military

system capabilities and operations” p.19
1960 – 8% of the F-4 aircraft functionality
1982 – 45% of the F16 aircraft functionality
2000 – 80% of the F-22 aircraft functionality

* Committee for Advancing Software-Intensive Systems Producibility; National Research Council (NRC).
Critical Code: Software Producibility for Defense, 2010

14

Systems Engineering vs. Software Engineering

Systems Engineering Assumptions
• Systems can be decomposed into

discrete, independent, and
hierarchically-related components
(or subsystems)

• Components can be constructed and
integrated with minimal effort based
on the original decomposition

• Quality properties can be allocated
to specific components

Software Engineering Realities
• Software components are often

related sets of layered functionality
(one layer is not inside another)

• Interactions of components (not the
decomposition) must be managed

• Security properties relate to
composite interactions (not to
individual components)

Systems engineering is insufficient for software-reliant security

System

Sub-system

HW SW

applications

common software services

generic device access
(e.g., LAN, device
drivers)

Interfaces to
capabilities
provided by
a layer

Within and outside
of the system

15

Software Assurance Impact on C&A

Focusing on individual systems is insufficient
• Critical services used by the software are not considered
• Differences in security controls for systems tied to the

same mission are not considered
Software development is increasingly in the supply
chain, and security controls must be considered
during acquisition
Missions, which extend beyond a single system,
define the functionality that is intended

Software assurance methods are required to build
effective operational security

16

Software Assurance Methods

Mission Thread Analysis
Supply Chain Risk Management
Security Requirements Elicitation (SQUARE)
Measurement

17

Software Assurance Across the Life Cycle

18

Mission Thread Analysis

19

Mission Thread Analysis

Establish the role of mission success (functioning as
intended) for system and software assurance
Analyze potential mission failure
Connect the software and systems to the operational
mission

• How is security defined and validated?
• Will the mission survive a security compromise?

20

Tool: Survivability Analysis Framework

21

Analysis of Mission Failure Potential

Who identifies and manages an error?
• Human or technology control?
• Coordination of responses across multiple components

(multiple contractors?)
Which faults should be reported and how?

• Logging and alerting can easily overload resources
• Will the receiver understand an error and know what to

do?
How could an attack go undiscovered in the “cracks”
between systems?

22

Delivered
System

Building the System

Mission Thread Analysis: building the case

Acceptance
Case

Building Justified Confidence

Released
System

Explanation of
why confidence

is justified

23

Mission Thread Resources
Survivability Analysis Framework, Robert Ellison & Carol Woody.
(CMU/SEI-2010-TN-013), June 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn013.cfm

Survivability Assurance for System of Systems, Robert Ellison, John
Goodenough, Charles Weinstock, & Carol Woody. (CMU/SEI-2008-TR-
008), May 2008.
http://www.sei.cmu.edu/library/abstracts/reports/08tr008.cfm

24

Supply Chain Risk
Management

25

State of Security in Software Products

MITRE has documented over 700 software errors in
commercial products that have led to exploitable
vulnerabilities: Common Weakness Enumeration (CWE)1

58% of all products submitted to Veracode for testing did not
achieve an acceptable security score upon first submission2

Forrester reports in Application Security: 2011 And Beyond3

47% do not perform acceptance tests for third party software
46% follow a homegrown application security methodology instead of
one that had been independently validated
27% do not perform security design

1. http://cwe.mitre.org
2. Fall DHS SwA Forum 2010
3. http://go.microsoft.com/?linkid=9777219

26

Limits for Supply Chain Risk Mitigations

Total prevention is not feasible because of the sheer number
of risks; limited development visibility; uncertainty of product
assurance; and evolving nature of threats, usage, and product
functionality
Responding exploit by exploit is a losing game

• Skilled attackers know system weaknesses better than defenders
• As networks and operating systems are hardened, attackers exploit

application software

Identify the risks, establish evidence for what has
been mitigated, monitor gaps

27

Acquisition of Products

28

Supply Chain Factors

Supply chain risks for a
product is reduced to

acceptable level

Supplier
Capability
Supplier
follows

practices
that reduce
supply chain

risks

Product
Security

Delivered or
updated

product is
acceptably

secure

Product
Distribution

Methods used
to transmit

product to the
purchaser

guard against
tampering

Operational
Product
Control

Product is
used in a
secure
manner

29

Acquisition of Systems
and Components

30

System Security Must Be Added

Supply chain risks for
system reduced to

acceptable level

Supplier
Capability
Supplier
follows

practices that
reduce supply

chain risks

Product
Security

Delivered or
updated

product is
acceptably

secure

Product
Distribution

Methods used
to transmit the
product to the

purchaser
guard again
tampering

Operational
Product
Control

Product is
used in a
secure
manner

System design should
ensure that externally
developed products
including legacy
software are used in a
secure manner

Addressed at the product level

System
Security

Component
products are

assembled for
effective system

security

31

Stronger Integrator Criteria is Needed

Integrator is providing a unique product
Applying practices such as threat modeling at the system level
can be more demanding than it is for a product

• Product development
— long product life - incremental
— focus on software weaknesses appropriate to that supplier’s

domain and products, guided by product history
— relatively small and stable set of suppliers

• An integration contractor or custom system developer
— multiple one-off, relatively short-lived efforts
— multiple functional domains
— multiple sets of software products, suppliers, and

subcontractors

32

Supply Chain Resources
Software Supply Chain Risk Management: From Products to Systems of
Systems, Robert J. Ellison, John B. Goodenough, Charles B. Weinstock, &
Carol Woody. (CMU/SEI-2010-TN-026), December 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn026.cfm

Evaluating and Mitigating Software Supply Chain Security Risks, Robert J.
Ellison, , John B. Goodenough, Charles B. Weinstock, & Carol Woody.
(CMU/SEI-2010-TN-016), May 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm

Webinar: Securing Global Software Supply Chains, Robert Ellison, June
2010. http://www.sei.cmu.edu/library/abstracts/webinars/Securing-Global-
Software-Supply-Chains.cfm

33

Security Requirements
Elicitation (SQUARE)

34

SQUARE

Methodology to help organizations build security into
the early stages of the production life cycle
Addresses eliciting, categorizing, and prioritizing
security requirements
Security requirements are

– treated at the same time as the system's functional
requirements, and

– carried out in the early stages
– specified in similar ways as software requirements

engineering and practices
– carried out through a process of nine discrete steps

35

The SQUARE Process

A robust SQUARE tool is available for download from
http://www.cert.org/sse/square.html

36

SQUARE Resources
Software Security Engineering: A Guide for Project Managers. Julia H. Allen, Sean
Barnum, Robert J. Ellison, Gary McGraw, & Nancy R. Mead. Addison Wesley
Professional, 2008. (Available from Amazon.com.)

U.S. Department of Homeland Security. Build Security In: Requirements
Engineering. U.S. Department of Homeland Security.
https://buildsecurityin.us-cert.gov/daisy/adm-bsi/articles/best-practices/
requirements.html

Security Quality Requirements Engineering , Nancy R. Mead, Eric Hough, & Ed
Stehney. (CMU/SEI-2005-TR-009), November 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm

“Identifying Security Requirements Using the Security Quality Requirements
Engineering (SQUARE) Method,” Nancy R. Mead, in Integrating Security and
Software Engineering: Advances and Future Visions. Edited by H. Mouratidis and
P. Giorgini. Idea Group, pp. 44-69, 2006 (ISBN: 1-59904-147-2).

37

SQUARE Case Study Reports
SQUARE-Lite: Case Study on VADSoft Project, Ashwin Gayash, Venkatesh
Viswanathan, & Deepa Padmanabhan. Faculty Advisor: Nancy R. Mead.
(CMU/SEI-2008-SR-017), June 2008.
http://www.sei.cmu.edu/library/abstracts/reports/08sr017.cfm

Security Quality Requirements Engineering (SQUARE): Case Study Phase III,
Eric Hough, Don Ojoko-Adams, Lydia Chung, & Frank Hung. (CMU/SEI-2006-
SR-003), May 2006.
http://www.sei.cmu.edu/library/abstracts/reports/06sr003.cfm

Privacy Risk Assessment Case Studies in Support of SQUARE, Varokos
Panusuwan & Prashanth Batlagundu. Faculty Advisor: Nancy Mead.
(CMU/SEI-2009-SR-017), July 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09sr017.cfm

38

Security Measurement

39

Definitions

Measurement
A set of observations that reduce uncertainty where the
result is expressed as a quantity1

Measure
A variable to which a value is assigned as the result of
measurement2

1. Hubbard, Douglas W. How to Measure Anything: Finding the Value of “Intangibles” in Business. John Wiley &
Sons, 2007.

2. International Organization for Standardization. ISO/IEC 15939:2007, Systems and Software Engineering –
Measurement Process, 2nd ed. ISO, 2007.

40

Drivers

Definition
A factor that has a strong influence on the eventual
outcome or result

Examples
• Security Process: The process being used to develop

and deploy the system sufficiently addresses security
• Security Task Execution: Security-related tasks and

activities are performed effectively and efficiently
• Code Security: The code will be sufficiently secure

41

Drivers: Success and Failure States

The objective when analyzing a driver’s state is to determine
how each driver is currently acting.

42

Drivers for Secure Software Development

Programmatic Drivers

1. Program Security Objectives

2. Security Plan

3. Contracts

4. Security Process

5. Security Task Execution

6. Security Coordination

7. External Interfaces

8. Organizational and External
Conditions

9. Event Management

Product Drivers

10. Security Requirements

11. Security Architecture and
Design

12. Code Security

13. Integrated System Security

14. Adoption Barriers

15. Operational Security
Compliance

16. Operational Security
Preparedness

17. Product Security Risk
Management

43

Evaluating Drivers

Driver Question

Does the process being used to develop and deploy the
system sufficiently incorporate security?

Response

Directions: Select the appropriate response to the driver question.

4.

Consider:

Security-related tasks and activities in the program
workflow
Conformance to security process models
Measurements and controls for security-related
tasks and activities
Process efficiency and effectiveness
Software security development life cycle
Security-related training
Compliance with security policies, laws, and
regulations
Security of all product-related information

Yes

Likely Yes

Equally Likely

Likely No

No

44

Driver Profile

The driver profile provides an indication of systemic risk to the mission.

It can be used as a dashboard for program decision makers.

1.
 P

ro
gr

am
 S

ec
ur

ity
 O

bj
ec

tiv
es

4.
 S

ec
ur

ity
 P

ro
ce

ss

6.
 S

ec
ur

ity
 C

oo
rd

in
at

io
n

2.
 S

ec
ur

ity
 P

la
n

8.
 O

rg
an

iz
at

io
na

l a
nd

 E
xt

er
na

l C
on

di
tio

ns

9.
 E

ve
nt

 M
an

ag
em

en
t

5.
 S

ec
ur

ity
 T

as
k

Ex
ec

ut
io

n

7.
 E

xt
er

na
l I

nt
er

fa
ce

s

10
. S

ec
ur

ity
 R

eq
ui

re
m

en
ts

17
. P

ro
du

ct
 S

ec
ur

ity
 R

is
k

M
an

ag
em

en
t

16
. O

pe
ra

tio
na

l S
ec

. P
re

pa
re

dn
es

s

12
. C

od
e

Se
cu

rit
y

11
. S

ec
ur

ity
 A

rc
hi

te
ct

ur
e

 &
 D

es
ig

n

D
riv

er
 V

al
ue

D
riv

er
 V

al
ue

3.
 C

on
tr

ac
ts

13
. I

nt
eg

ra
te

d
Sy

st
em

 S
ec

ur
ity

14
. A

do
pt

io
n

B
ar

rie
rs

15
. O

pe
ra

tio
na

l S
ec

ur
ity

 C
om

pl
ia

nc
e

45

MRD: Focus on Mission Risk
D

riv
er

 V
al

ue

Systemic risk to the mission (also called mission risk) is defined
as the probability of mission failure (not achieving key objectives).

From the MRD perspective, mission risk is the probability that
a driver is in its failure state.

46

Measurement Resources
Integrated Measurement and Analysis Framework for Software Security, C.
Alberts, J. Allen, & R. Stoddard. (CMU/SEI-2010-TN-025), September
2010. http://www.sei.cmu.edu/library/abstracts/reports/10tn025.cfm

Risk Management Framework, Christopher Alberts & Audrey Dorofee.
(CMU/SEI-2010-TR-017). August 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr017.cfm

47

Summary

48

Compliance Limitations

Based on principles that were developed in
1974 and much as changed since that time

Does not address security for software-reliant
systems

Does not address the security risks of software
acquisition decisions

49

Focus on Software Assurance

Ensure that systems and software function as
intended and are free from vulnerabilities

Key areas for risk mitigation:
• Mission Thread Analysis
• Supply Chain Risk Management
• Security Requirements
• Measurement

50

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

